Westinghouse

January 1, 1961

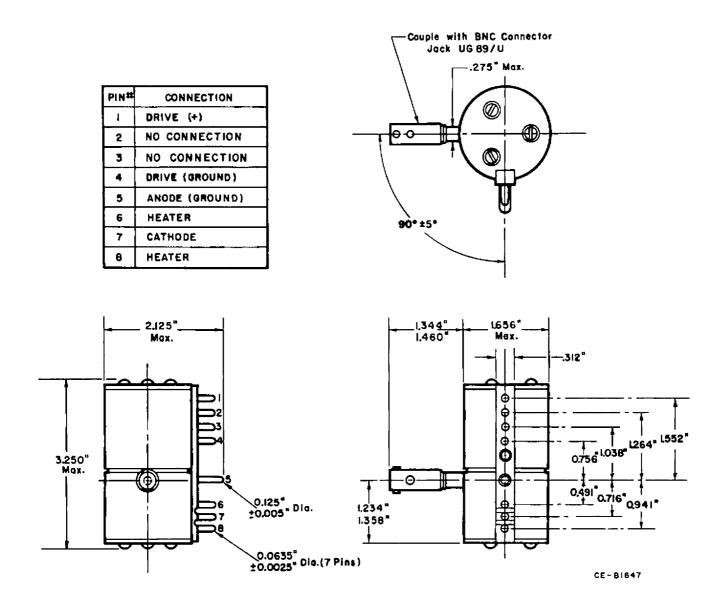
MAGNETRON TYPE 7796

Band Sweep Operation Amplitude Modulation

1-1/2 Watts Power Output Electro - Mechanical Frequency Sweep

The 7796 is a C band CW magnetron intended for use in applications requiring swept frequency operation over the band from 4200 to 4400 megacycles. Over this band, the power output is 1.5 watts minimum. Frequency is changed by varying the strap-to-strap capacity of the doubly-strapped vane resonator. This is accomplished by an electrically-driven reed inside the vacuum envelope. This member can be driven at any frequency from 0 to 300 cycles per second. Reed resonance occurs at approximately 300 cycles per second.

The 7796 can be frequency modulated at frequencies up to 300 cycles per second at a deviation from 0 to 100 megacycles. The AM modulation resulting from this deviation is very small. The center frequency can be varied from 4200 to 4400 by passing dc current through the drive coils.


The 7796 has a very low pushing figure, permitting it to be amplitude modulated with small amounts of incidental FM. Amplitude modulation is accomplished by varying the anode voltage. Modulation at frequencies up to 1 megacycle is possible.

The 7796 is small, light weight and resistant to shock and vibration. Integral magnets are contained within an external steel shell. Output is from a BNC connector.

ELECTRICAL:	MAXIMUM RATINGS:
Cathode	Absolute Maximum Values:
Heater:	Heater Voltage 7.0 max. Volts
Voltage	Anode Voltage
Current	Anode Modulating Voltage for Pulse or
Heating Time	Amplitude Modulation for 100% Modulation. , 100 max. Volts
Reed Drive Coil Resistance at 25°C 0.3 to 0.4 Ohms	Heater-Cathode Voltage ± 45 max. Volts
MECHANICAL:	TYPICAL OPERATING CHARACTERISTICS:
Operating Position (Note 1) Any	Anode Voltage
Connectors:	Anode Current
Output Couples with BNC Jack (JAN UG-89/U)	Reed Resonant Frequency 300 ± 30 CPS
Operating VoltagesSpecial 8-Pin In-Line Socket	Reed Drive Peak-to-Peak Voltage at Resonance
Cooling Unrestricted Air Convection	for ± 100 Mc. Shift 0.1 Volts
Ambient Temperature	Reed Drive Direct Current for ± 100 Mc Shift ± 0.5 Ampere
Shell Temperature (Max.) 40 °C Above Ambient	Audio Power for 100% Amplitude Modulation 2.5 Watts
Magnet Isolation Shell must be at least 1" from Magnets	Average RF Power Output over Band 1.5 Watts
Vibration: (Note 2)	- · · · · · · · · · · · · · · · · · · ·
Frequency	1. The connectors do not provide mechanical support. Non-magnetic
Amplitude	clamps should be used to support the shell.
Net Weight	2. Special vibration problems should be referred to Westinghouse
Shipping Weight	Electronic Tube Division, Elmira, New York.

Westinghouse

Page 2

