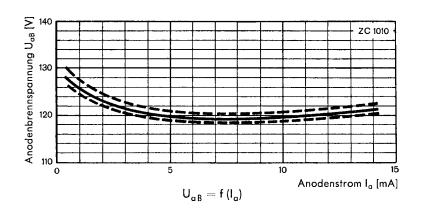
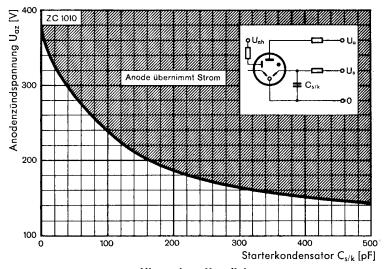
Subminiatur-Glimmrelaisröhre

Vorläufiges Datenblatt

Relaisröhre mit 2 gleichwertigen Starterelektroden und einer Hilfsanode, geeignet für die Verwendung in Zählschaltungen für Vorwärts- und Rückwärtszählungen, Multivibratorschaltungen und Relaissteuerungen.


Glasausführung	Subminiatur
Reinmetallkathode	kalt
Montageanordnung	beliebig
Gewicht	0,002 kg


Technische Werte

Meßwerte

Anodenzündspannung ¹) bei $U_{s_1} = U_{s_2} = 0 \text{ V}$ bei $U_{s_1} = 150 \text{ V}$, $U_{s_2} = 0 \text{ V}$ bei $U_{s_1} = 0 \text{ V}$, $U_{s_2} = 150 \text{ V}$ bei $U_{s_1} = 0 \text{ V}$, $U_{s_2} = 150 \text{ V}$	Uaz Uaz Uaz Uaz	min. + 370 min. + 355 min. + 355 min. + 335	V V V
Anodenbrennspannung bei $I_a = 5 \text{ mA}$	U _{aB}	119122	٧
$\begin{array}{l} \text{Starterz\"{u}ndspannung}^1)\\ \text{bei } U_{s_2} = 0 \dots 150 \text{ V}, U_{\alpha} = 150 \dots 330 \text{ V}\\ \text{bei } U_{s_1} = 0 \dots 150 \text{ V}, U_{\sigma} = 150 \dots 330 \text{ V}\\ \text{Starterbrennspannung}\\ \text{bei } I_s = 30 \mu\text{A} \end{array}$	$\begin{aligned} &U_{s_1z}\\ &U_{s_2z}\\ &U_{s_1B}=U_{s_2B} \end{aligned}$	+ 157 + 167 + 157 + 167 ≈ 128	
Hilfsanodenzündspannung bei mittlerer Beleuchtung bei absoluter Dunkelheit Hilfsanodenbrennspannung bei l _{ah} = 0,5 µA	U _{ahz} U _{ahz} U _{ahB}	max. + 178 max. + 230 max. 165	V V

¹) Gemessen bei einem Dauerstrom von l_{ah} ≈ 0,5 µA über die Hilfsanode. Hierbei ist die Hilfsanode über einen hochohmigen Widerstand an eine gegen Kathode positive Spannung zu legen. Der Widerstand soll unmittelbar mit dem Elektrodenanschluß a_h verbunden werden.

Ubernahme-Kennlinie

Äußere Kennlinie des Streubereichs für
$$U_{az} = f(C_{s/k})$$

$$I_{\alpha\,h}\!\approx\!0,\!5\,\mu A$$

Die **Ubernahme-Kennlinie** gibt an, bei welchen Werten von $C_{s/k}$ und U_a die Zündung der Hauptentladung mit Sicherheit erfolgt. Hierzu muß an einen der beiden Starter eine Spannung U_{s_1} bzw. U_{s_2} gelegt werden, deren Wert oberhalb der max. angegebenen Starterzündspannung liegt.